

Revision 0.91

SINGLE FREQUENCY LASER DFB Laser



info@amstechnologies.com www.amstechnologies-webshop.com

General Product Information

Product	Application
852 nm DFB Laser	Spectroscopy (Cs D2 line)
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with PM Fiber, integrated $\mu\text{-}lsolator$ and Angled Physical Contact (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	° C	-40		85
Operational Temperature at Case	T_C	° C	-15		70
Operational Temperature at Chip	T_{chip}	° C	10		50
Forward Current	I _F	mA			250
Reverse Voltage	V_{R}	V			2
Output Power	P_{opt}	mW			20
TEC Current	I _{TEC}	Α			1,4
TEC Voltage	V_{TEC}	V			4,8

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	5		60
Operational Temperature at Chip	T_{chip}	° C	15		45
Forward Current	I _F				230
Output Power	P_{opt}	mW	5		15

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics Tchip = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _C	nm	851	852	853
Target Wavelength	λ_{T}	nm		852.347	
Linewidth	$\Delta\lambda$	MHz		0,6	1
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	pm	25	0	
Sidemode Suppression Ratio	SMSR	dB	30	45	
Temp. Coefficient of Wavelength	$d\lambda/dT$	nm/K		0,06	
Current Coefficient of Wavelength	dλ / dl	nm/mA		0,003	

reached within Tchip = 15 ° 45° C at 15	mW
Popt = 15 mW	
> 10 GHz, at target wavelength	
Popt = 15 mW	

Revision 0.91

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip = 25° at BOL	
Parameter	Symbol Unit min	typ max
Laser Current	I _{LD} mA	230
Slope Efficiency	η mW/mA	0,08
Threshold Current	I _{th} mA	70
Polarization Extinction Ratio	PER dB	20

Measurement Conditions / Comments
Popt = 15 mW

Parameter	Symbol Ur	nit min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{or} μΑ/r	mW 10		200

Measurement Conditions / Comments
5 V reverse voltage

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	Α		0,4	
Voltage	U_TEC	V		1,5	
Power Dissipation (total loss at case)	P _{loss}	W		0,5	
Temperature Difference	ΔΤ	K			45

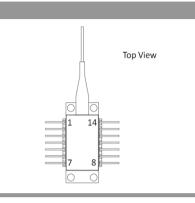
Measurement Conditions / Comments
Popt = 15 mW, ΔT =30 K
Popt =15 mW, ΔT =30 K
Popt = 15 mW, ΔT =30 K
15 mW, ΔT = Tcase - Tchip

Thermistor	(Standard	NTC Type)
	l Olanuanu	

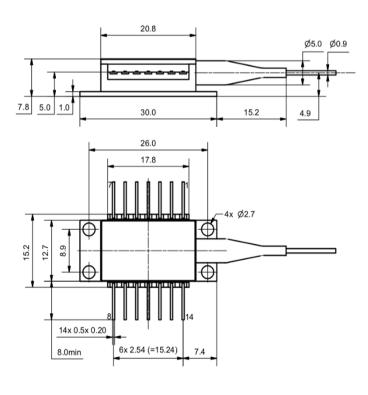
Thermoelectric Cooler

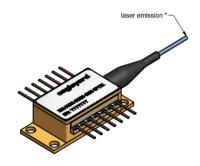
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α		1.	1293 x 10	3
Steinhart & Hart Coefficient B	В		2.	3410 x 10	- 4
Steinhart & Hart Coefficient C	С		8.	7755 x 10	- 8

Measurement Conditions / Comments
Tchip = 25° C
R_1/R_2 = $e^{\Lambda}\beta(1/T_1$ - $1/T_2)$ at Tchip = 0° 50° C


Revision 0.91

2024-04-11


SINGLE FREQUENCY LASER DFB Laser



Pin A	ssignment		
1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photo Diode Anode	12	not connected
4	Photo Diode Cathode	11	Laser Diode Cathode
5	Thermistor	10	Laser Diode Anode
6	not connected	9	not connected
7	not connected	8	not connected

Package Drawings

AIZ-16-0222-1415

Revision 0.91

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Fiber and Connector Type (Output)		
Parameter		Measurement Conditions / Comments
PM Fiber	900 / 125 / 5.5 μ m, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)	
Connector	FC/APC (narrow key / 2mm)	

Revision 0.91

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

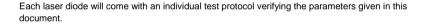
Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

INVISIBLE LASER RADIATION

AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS

4 LASER PRODUCT


WAVELENGTH 852 nm

MAX. OUTPUT POWER 20 mW

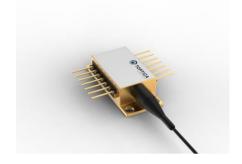
IEC-60825-

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Revision 1.10


SINGLE FREQUENCY LASER DFB Laser

General Product Information

Product	Application
852 nm DFB Laser	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with PM Fiber and angle-polished Connector (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T_C	° C	-40		85
Operational Temperature at Chip	T_{chip}	° C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_{R}	V			2
Output Power	P_{opt}	mW			55
TEC Current	I _{TEC}	Α			1,4
TEC Voltage	V_{TEC}	V			3,2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Chip	T_{chip}	° C		25	
Forward Current	I _F				180

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics Tchip = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Linewidth	$\Delta\lambda$	MHz		2	
Sidemode Suppression Ratio	SMSR	dB	30	45	
Temp. Coefficient of Wavelength	$d\lambda/dT$	nm/K		0,06	
Current Coefficient of Wavelength	$d\lambda/dI$	nm/mA		0,003	

Measurement Conditions / Comments
Popt = 50 mW

Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip = 25° at BOL	
Parameter	Symbol Unit min	typ max
Laser Current	I _{LD} mA	180
Slope Efficiency	η mW/mA	0,5
Threshold Current	I _{th} mA	70
Polarization Extinction Ratio	PER dB	20

Measurement Conditions / Comments
Popt = 50 mW

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{op}	μΑ/mW	1		20

Measurement Conditions / Comments	
5 V reverse voltage	

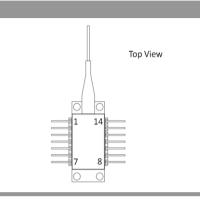
Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	Α		0,4	
Voltage	U_TEC	V		0,8	
Power Dissipation (total loss at case)	P _{loss}	W		0,5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments
Popt =50 mW, ΔT = 20 K
Popt = 50 mW, ΔT = 20 K
Popt = 50 mW, ΔT = 20 K
Popt = 50 mW, ΔT = Tcase - Tchip

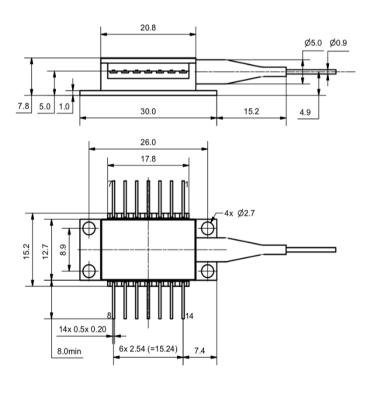
Thermistor	(Standard NTC	Type)

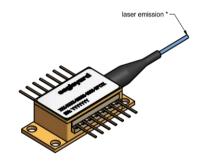
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β		3892		
Steinhart & Hart Coefficient A	А		1.1293 x 10 ⁻³		
Steinhart & Hart Coefficient B	В		2.	3410 x 10	- 4
Steinhart & Hart Coefficient C	С		8.	7755 x 10 ⁻	- 8

Measurement Conditions / Comments			
Tchip = 25° C			
R_1/R_2 = $e^{\Lambda}\beta(1/T_1$ - $1/T_2)$ at Tchip = 0° 50° C			


Revision 1.10

2024-04-11


SINGLE FREQUENCY LASER DFB Laser



Pin Assignment	
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected

Package Drawings

AIZ-16-0222-1415

Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Fiber and Conne	ector Type (Output)	
Parameter		Measurement Conditions / Comments
PM Fiber	900 / 125 / 5.5 μm, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)	
Connector	FC/APC (narrow key / 2mm)	

Revision 1.10

2024-04-11

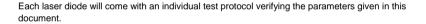
SINGLE FREQUENCY LASER DFB Laser

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

INVISIBLE LASER RADIATION


AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS
4 LASER PRODUCT

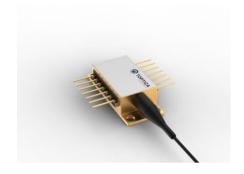
WAVELENGTH 852 nm

MAX. OUTPUT POWER 55 mW

IEC-60825-

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Product	Application
Tunable 852 nm DFB Laser	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with PM Fiber and angle-polished Connector (APC)	

Absolute Maximum Ratings

General Product Information

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	° C	-40		85
Operational Temperature at Case	T_{C}	° C	-40		85
Operational Temperature at Chip	T_{chip}	° C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_{R}	V			2
Output Power	P_{opt}	mW			55
TEC Current	I _{TEC}	Α			1,4
TEC Voltage	V_{TEC}	V			3,2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Chip	T_{chip}	° C	15		45
Forward Current	I _F				180
Output Power	P_{opt}	mW	10		50

Measurement Conditions / Comments
magaured by integrated Thermister
measured by integrated Thermistor

Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip= 25° at BOL					
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Center Wavelength	λ _C	nm	851	852	853	
Linewidth	Δλ	MHz		2		50 mW
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	nm		1,5		see note 1) on last page
Sidemode Suppression Ratio	SMSR	dB	30	45		
Temp. Coefficient of Wavelength	dλ / dT	nm/K		0,06		
Current Coefficient of Wavelength	dλ / dl	nm/mA		0.003		

Note 1) This variant allows wavelength tuning by temperature or current variation; in case of external back-reflections small mode-hops of 100 MHz or less may appear.

For spectroscopic application requiring absolutely mode-hop-free tuning the use of a package variant with integrated optical isolators or a package variant without fiber pigtail for free beam setups is recommended. In case of very demanding requirements an additional external isolator is required in order to suppress disturbing back-reflections that may occur in some setups.

Characteristics	Tchip= 25° at BOI	-			
Parameter	Symbol	l Unit	min	typ	max
Mode-hop free Temperature Range	T _{chip}	°C	15		40
Mode-hop free Power Range	P_{opt}	mW	10		50
Laser Current	I _{LD}	mA			180
Slope Efficiency	η	mW/mA		0,5	
Threshold Current	I _{th}	mA			70
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments		
Temperature at Laser Chip		
D		
Popt = 50 mW		

Monitor Diode				
Parameter	Symbol Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{or} μA/mW	1	71	20

Measurement Conditions / Comments
5 V reverse voltage

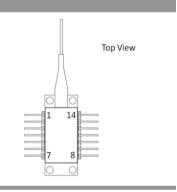
Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	Α		0,4	
Voltage	U_TEC	V		0,8	
Power Dissipation (total loss at case)	P _{loss}	W		0,5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments	
Popt = 50 mW, ΔT = 20 K	
Popt = 50 mW, ΔT = 20 K	
Popt = 50 mW, ΔT = 20 K	
Popt = 50 mW, ΔT = Tcase - Tchip	

Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

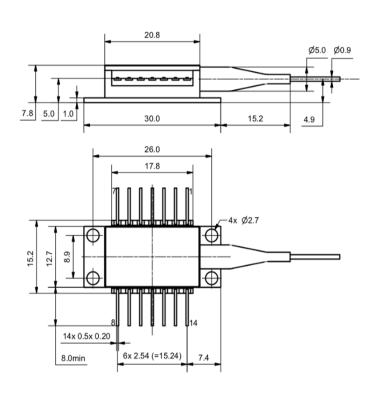

Thermistor (Standard NTC Type)

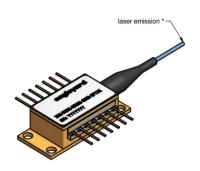
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α		1.	1293 x 10 ⁻	3
Steinhart & Hart Coefficient B	В		2.	3410 x 10	4
Steinhart & Hart Coefficient C	С		8.	7755 x 10	8

Measurement Conditions / Comments	
Tchip = 25° C	
$R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0° 50° C	

Pin Assignment

1 Thermoelectric Cooler (1)	14 Therman lectric Cooler ()
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected


Revision 1.10


2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Package Drawings

AIZ-16-0222-1415

Fiber and Connector Type (Output)

Parameter	
PM Fiber	900 / 125 / 5.5 μm, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Measurement Conditions / Comments

Revision 1.10

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

INVISIBLE LASER RADIATION

AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS
4 LASER PRODUCT
WAVELENGTH 852 nm
MAX. OUTPUT POWER 55 mW

IEC-60825-

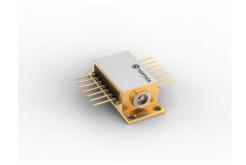
Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Revision 0.92

SINGLE FREQUENCY LASER DFB Laser



info@amstechnologies.com www.amstechnologies-webshop.com

General Product Information

Product	Application
Tunable 852 nm DFB Laser	Spectroscopy
with hermetic 14 Pin-Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	THz Generation
with integrated Beam Collimation	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T_C	° C	-40		85
Operational Temperature at Chip	T_{chip}	° C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_{R}	V			2
Output Power	P_{opt}	mW			110
TEC Current	I _{TEC}	Α			1,4
TEC Voltage	V_{TEC}	V			3,2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Chip	T_{chip}	° C	15		45
Forward Current	I _F				180
Output Power	P_{opt}	mW	20		100

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics T chip = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _C	nm	851	852	853
Linewidth	$\Delta\lambda$	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	nm		1,5	
Sidemode Suppression Ratio	SMSR	dB	30	50	
Temp. Coefficient of Wavelength	$d\lambda/dT$	nm/K		0,06	
Current Coefficient of Wavelength	dλ / dl	nm/mA		0,003	

Measurement Conditions / Comments
Popt = 100 mW
reached by temperature modulation
Popt = 100 mW

Revision 0.92

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

T chip = 25° at BO	L			
Symbol	Unit	min	typ	max
I _{LD}	mA			180
η	mW/mA		0,8	
I _{th}	mA			70
Θ	0		0,1	
Θ_{\perp}	0		0,1	
$d_{ }$	mm		1	1,2
d_\perp	mm		0,8	1,2
DOP	%		90	
	$\begin{array}{c} \text{Symbol} \\ I_{LD} \\ \eta \\ I_{lh} \\ \Theta_{ } \\ \Theta_{\perp} \\ d_{ } \\ d_{\perp} \end{array}$	$\begin{array}{ccc} I_{LD} & mA \\ & \eta & mW/mA \\ & I_{th} & mA \\ & \Theta_{ } & \circ \\ & \Theta_{\perp} & \circ \\ & d_{ } & mm \\ & d_{\perp} & mm \end{array}$	$\begin{array}{c cccc} Symbol & Unit & min \\ \hline I_{LD} & mA \\ & \eta & mW/mA \\ \hline I_{lh} & mA \\ \hline \Theta_{ } & \circ \\ \hline \Theta_{\perp} & \circ \\ \hline d_{ } & mm \\ \hline d_{\perp} & mm \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Measurement Conditions / Comments
parallel to the base plate of the housing
perpendicular to base plate of the housing
parallel to the base plate of the housing
perpendicular to base plate of the housing
Popt = 100 mW; E field parallel to the base plate

Monitor Diode				
Parameter	Symbol Unit	min	typ	max
Monitor Detector Responsivity	$I_{mon} / P_{of} \mu A/mW$	0,5		10

Measurement Conditions / Comments
5 V reverse voltage

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	Α		0,4	
Voltage	U_{TEC}	V		1,3	
Power Dissipation (total loss at case)	P _{loss}	W		0,4	
Temperature Difference	ΔΤ	K			50

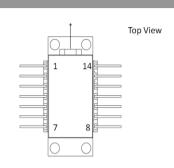
Measurement Conditions / Comments
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = Tcase - Tchip

Symbol	Unit	min	typ	max
R	kΩ		10	
β			3892	
Α		1.	1293 x 10 ⁻	3
В		2.	3410 x 10 ⁻	4
С		8.	7755 x 10 ⁻	8
	R β A B	R kΩ β A B	R kΩ β A 1. B 2.	R kΩ 10 β 3892 A 1.1293 x 10 ⁻¹ B 2.3410 x 10 ⁻¹

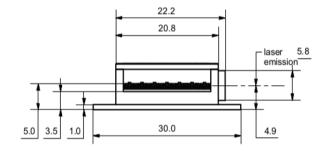
Measurement Conditions / Comments
Tchip = 25° C
$R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0° 50° C

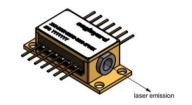
Thermistor (Standard NTC Type)

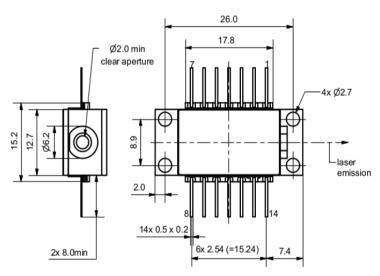
Revision 0.92


2024-04-11

SINGLE FREQUENCY LASER DFB Laser




Pin Assignment


1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected

Package Drawings

AIZ-20-1029-0928

Revision 0.92

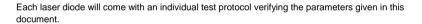
2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

id id


INVISIBLE LASER RADIATION

AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS
4 LASER PRODUCT
WAYELENGTH 852 nm
MAX. OUTPUT POWER 110 mW

IEC-60825-

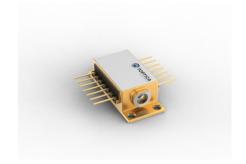
A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Revision 0.93

SINGLE FREQUENCY LASER DFB Laser



info@amstechnologies.com www.amstechnologies-webshop.com

General	Product	Information
Ochicia	i i ioaact	IIIIOIIIIalioii

Product	Application
852 nm DFB Laser	Spectroscopy (Cs D2 line)
with hermetic 14 Pin-Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Atomic Clock
with integrated Beam Collimation	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	° C	-40		85
Operational Temperature at Case	T_C	° C	-40		85
Operational Temperature at Chip	T_{chip}	° C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_{R}	V			2
Output Power	P_{opt}	mW			110
TEC Current	I_{TEC}	Α			1,4
TEC Voltage	V_{TEC}	V			3,2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Chip	T_{chip}	° C	15		45
Forward Current	I _F				180
Output Power	P_{opt}	mW	20		100

Measurement Conditions / Comments
measured by integrated Thermistor
0

Characteristics Tchip = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Target Wavelength	λ_{T}	nm		852.347	
Linewidth	Δλ	MHz		0,6	1
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	pm	25		
Sidemode Suppression Ratio	SMSR	dB	30	50	
Temp. Coefficient of Wavelength	$d\lambda / dT$	nm/K		0,06	
Current Coefficient of Wavelength	dλ / dl	nm/mA		0,003	

Measurement Conditions / Comments				
reached within Tchip =15 ° 45° C at 100 mW				
Popt = 100 mW				
> 10 GHz, at target wavelength				
Popt = 100 mW				

Revision 0.93

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip = 25° at BOL			
Parameter	Symbol	Unit m	nin typ	max
Laser Current	I _{LD}	mA		180
Slope Efficiency	ηr	mW/mA	0,8	
Threshold Current	I _{th}	mA		70
Divergence parallel	Θ	0	0,1	
Divergence perpendicular	Θ_{\perp}	o	0,1	
Beam Diameter horizontal	d	mm	1	1,2
Beam Diameter vertical	d_{\perp}	mm	0,8	1,2
Degree of Polarization	DOP	%	90	

Measurement Conditions / Comments
parallel to the base plate of the housing
perpendicular to base plate of the housing
parallel to the base plate of the housing
perpendicular to base plate of the housing
Popt = 100 mW; E field parallel to the base plate

Monitor Diode				
Parameter	Symbol Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{or} μA/mW	0,5		10

Measurement Conditions / Comments
5 V reverse voltage

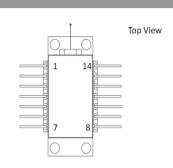
Symbol	Unit	min	typ	max
I _{TEC}	Α		0,4	
U_TEC	V		1,3	
P _{loss}	W		0,4	
ΔΤ	K			50
	I _{TEC} U _{TEC} P _{loss}	I _{TEC} A U _{TEC} V P _{loss} W	I _{TEC} A U _{TEC} V P _{loss} W	H _{TEC} A 0,4 U _{TEC} V 1,3 P _{loss} W 0,4

Measurement Conditions / Comments
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = 20 K
Popt = 100 mW, ΔT = Tcase - Tchip

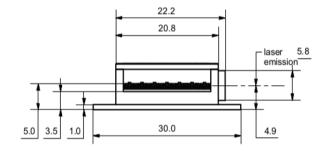
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α		1.	1293 x 10 ⁻	3
Steinhart & Hart Coefficient B	В		2.	3410 x 10	4
Steinhart & Hart Coefficient C	С		8.	7755 x 10	8

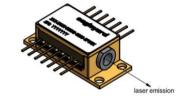
Measurement Conditions / Comments
Tchip = 25° C
$R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0° 50° C

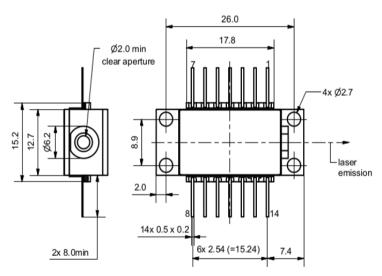
Thermistor (Standard NTC Type)


Revision 0.93

2024-04-11




SINGLE FREQUENCY LASER DFB Laser


Pin Assignment	
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected

Package Drawings

AIZ-20-1029-0928

Revision 0.93

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

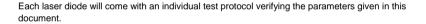
Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

INVISIBLE LASER RADIATION

AVOID EYE OR SKIN EXPOSUR
TO DIRECT OR SCATTERED RADIATION CLASS

4 LASER PRODUCT


WAVELENGTH 852 nm

MAX. OUTPUT POWER 110 mW

IEC-60825-

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Application
Spectroscopy
Metrology
THz Generation

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_{LD}	°C	5		50
Forward Current	l _F	mA			270
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			160
TEC Current	I _{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_LD	°C	5		45
Forward Current	I _F	mA			250
Output Power	P_{opt}	mW	30		150

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Linewidth (FWHM)	Δλ	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments				
see images on page 4				
$P_{opt} = 150 \text{ mW}$				

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T_{LD} = 25° at	BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Laser Current @ P _{opt} = 150 mW	I_{LD}	mA			250
Slope Efficiency	η	W/A	0.6	0.8	1.1
Threshold Current	I_{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

Measurement Conditions / Comments			
parallel to short axis of the housing (see p. 3)			
parallel to long axis of the housing (see p. 3)			
150 mW; E field perpendicular to long axis of housing			

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA/mW	1		20

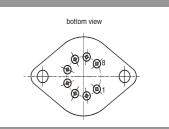
Meas	surement Conditions / Comments	
$J_R =$	5 V	

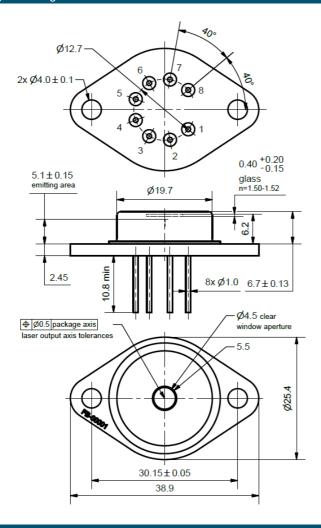
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

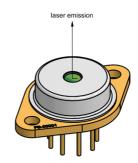
Measu	rement Conditions / Comments
P _{opt} =	150 mW, ΔT = 20 K
P _{opt} =	150 mW, ΔT = 20 K
$P_{\text{opt}} =$	150 mW, $\Delta T = 20 \text{ K}$
P _{opt} =	150 mW, $\Delta T = Tcase - TLD $

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

Measurement Conditions / Comments				
$T_{LD} = 25^{\circ} C$				
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C			
$1/T = A + B(\ln R) + C(\ln R)^3$				
T: temperature in Kelvin				
R: resistance at T in Ohm				


Thermistor (Standard NTC Type)

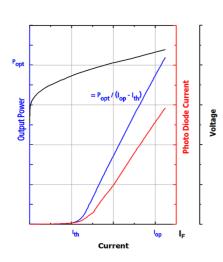

Revision 1.07


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

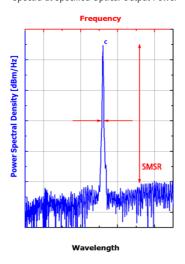
Package Drawings

AIZ-16-311-1543-B

Revision 1.07


2018-06-28

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

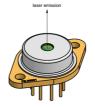


Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 852 nm
MAX. OUTPUT POWER 160 mW

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 852 nm DFB Laser	Spectroscopy
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	THz Generation

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_{LD}	°C	5		50
Forward Current	I _F	mA			270
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			160
TEC Current	I _{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_LD	°C	5		45
Forward Current	I _F	mA			250
Output Power	P _{opt}	mW	30		150

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm		1500	
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments
see images on page 4
reached by temperature modulation
$P_{opt} = 150 \text{ mW}$

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL cont'd						
Parameter	Symbol	Unit	min	typ	max	
Mode-hop free Temperature Range	T_{LD}	° C	15		40	
Mode-hop free Power Range	P _{opt}	mW	30		150	
Laser Current @ P _{opt} = 150 mW	I _{LD}	mA			250	
Slope Efficiency	η	W/A	0.6	0.8	1.1	
Threshold Current	I _{th}	mA			70	
Divergence parallel (FWHM)	$\Theta_{ }$	0		8		
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21		
Degree of Polarization	DOP	%		90		

Measurement Conditions / Comments
Temperature at Laser Chip
parallel to short axis of the housing (see p. 3)
parallel to long axis of the housing (see p. 3)
150 mW; E field perpendicular to long axis of housing

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	μΑ/mW	1		20
				, , , , , , , , , , , , , , , , , , ,

Meası	urement (Conditions	/ Commer	its	
$U_R =$	5 V				

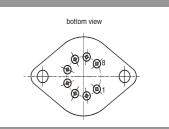
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments
$P_{opt} = 150 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW}, \Delta T = Tcase - TLD $

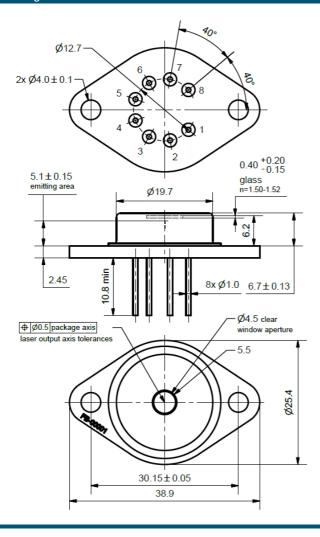
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А		1.1293 x 10 ⁻³		
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	С			8.7755 x 10	-8

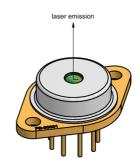
Measurement Conditions / Con	nments
$T_{LD} = 25^{\circ} C$	
$R_1 / R_2 = e^{ \beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^3$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

Thermistor (Standard NTC Type)



Revision 1.07


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

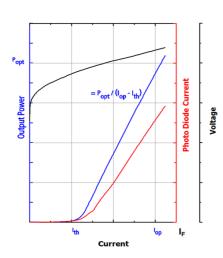


Pi	in Assignment		
1	Thermoelectric Cooler (+)	5	Laser Diode Anode
2	Thermistor	6	Monitor Diode Anode
3	Thermistor	7	Photo Diode Cathode
4	Laser Diode Cathode	8	Thermoelectric Cooler (-)
All	8 pins are isolated from case.		

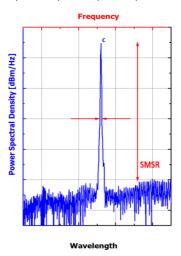
Package Drawings

AIZ-16-311-1543-B

Revision 1.07


2018-06-28

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



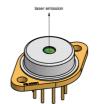
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 852 nm
MAX. OUTPUT POWER 160 mW

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
852 nm DFB Laser	Spectroscopy (Cs D2 line)
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	THz Generation
	Atomic Clock

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T _S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_LD	°C	5		50
Forward Current	I _F	mA			270
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			160
TEC Current	I_{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_LD	°C	5		45
Forward Current	I _F	mA			250
Output Power	P _{opt}	mW	30		150

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Target Wavelength	λ_{T}	nm		852.347	
Linewidth (FWHM)	$\Delta\lambda$	MHz		0.6	1
Sidemode Supression Ratio	SMSR	dB	30	45	
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm	25		

Measurement Conditions / Comments
see images on page 4
reached within T_{LD} = 15 ° 45° C at 150 mW
$P_{opt} = 150 \text{ mW}$
> 10 GHz, at target wavelength
> 10 GHz, at target wavelength

Revision 1.07

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at E	BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Laser Current @ P _{opt} = 150 mW	I_{LD}	mA			250
Slope Efficiency	η	W/A	0.6	8.0	1.1
Threshold Current	I_{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

Measurement Conditions / Comments
parallel to short axis of the housing (see p. 3)
parallel to long axis of the housing (see p. 3)
Popt = 150 mW: E field perpendicular to long axis of hou

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	μΑ/mW	1		20
		Symbol Unit		

Meas	urement Conditions / Comments
$J_R =$	5 V

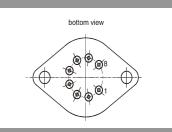
Symbol	Unit	min		
		1111111	typ	max
I _{TEC}	Α		0.4	
U_TEC	V		0.8	
P _{loss}	W		0.5	
ΔΤ	K			50
	U _{TEC}	U _{TEC} V P _{loss} W	U _{TEC} V P _{loss} W	U _{TEC} V 0.8 P _{loss} W 0.5

Measurement Conditions / Comments			
P _{opt} =	150 mW, ΔT = 20 K		
P _{opt} =	150 mW, ΔT = 20 K		
$P_{opt} =$	150 mW, ΔT = 20 K		
P _{opt} =	150 mW, $\Delta T = Tcase - TLD $		

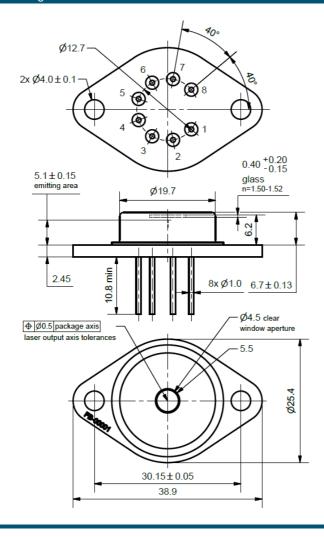
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

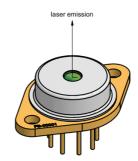
Measurement Conditions / Comments					
$T_{LD} = 25^{\circ} C$					
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C				
$1/T = A + B(\ln R) + C(\ln R)^3$					
T: temperature in Kelvin					
R: resistance at T in Ohm					

Thermistor (Standard NTC Type)



Revision 1.07


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

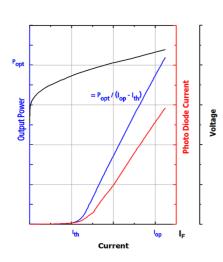


Pi	n Assignment		
1	Thermoelectric Cooler (+)	5	Laser Diode Anode
2	Thermistor	6	Monitor Diode Anode
3	Thermistor	7	Photo Diode Cathode
4	Laser Diode Cathode	8	Thermoelectric Cooler (-)
All	8 pins are isolated from case.		

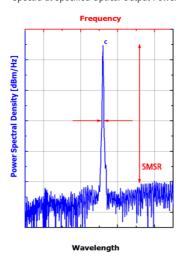
Package Drawings

AIZ-16-311-1543-B

Revision 1.07


2018-06-28

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



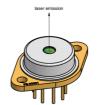
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 852 nm
MAX. OUTPUT POWER 160 mW

